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Calculations are presented of the development of the turbulent boundary layer 
on a rotating cylinder with its axis along the stream, and the results are com- 
pared with measurements made by Parr. With the choice of a suitable co-ordinate 
system, the boundary layer downstream of the nose of the cylinder approximates 
closely to a condition of two-dimensionality, and a simple integral method of 
solution can be applied. The only evidence of three-dimensionality lies in the 
destabilizing effect of rotation on the turbulence structure of the layer and 
an analysis of this instability has been made which relates changes in mixing 
length and entrainment to an instability parameter in the form of a Richardson 
number. 

In  spite of the changes in shear stress distribution and entrainment brought 
about by rotation, mean velocity profiles and skin friction values are found to 
be related to H and R, in the same way as for the stationary flat plate. 

1. Introduction 
Examples of boundary-layer flow on a body of revolution rotating in an axial 

stream are to be found in several engineering applications; for example, in the 
flow over an airscrew spinner, or a rotating projectile, or the rotating hubs of 
various types of turbo-machine. In most circumstances the boundary layer will 
be turbulent, either because of high stream turbulence or because of the de- 
stabilizing effects of rotation on the laminar boundary layer. The prediction of 
turbulent boundary-layer development is therefore required if an accurate 
assessment is to be made of torque and drag. 

One of the most evident characteristics of the boundary layer on a body 
rotating in a stream is the skewness of the velocity profile, as shown in figure 1. 
Because of the boundary conditions, the velocity vector must turn through a 
right angle in tracing the velocity through the layer. At fist sight, this three- 
dimensionality would appear to complicate the problem, and indeed this is 
generally true. However, it can be shown theoretically that, for the special case 
of the rotating circular cylinder investigated here, the boundary-layer flow 
can be reduced effectively to two dimensions by a suitable choice of axes rotating 
with the cylinder. This result was pointed out by Sutton (Horlock, Norbury & 
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Cooke 1967) and has been demonstrated by the measurements of Parr (1962) and 
Furuya, Nakamura & Kawachi (1966). In  fact, Parr, who fist observed this 
behaviour experimentally, simply commented on the result as 'remarkable ' 
and used it as an assumption in his subsequent theoretical analysis. Furuya, 
on the other hand, apparently recognized that the quasi-collateral condition 
should exist and established the effective two-dimensionality of the flow to 
within the experimental accuracy of his measurements. However, no attempt was 
made to explain the occurrence of the two-dimensionality. 

U." 

A X  
stream 

FIGURE 1. Boundary-layer flow on a rotating cylinder in an axial stream. 

Physically, the boundary-layer development on a rotating cylinder in an axial 
stream is equivalent to that on a flat plate with the fluid subjected t o  outward 
normal forces. Since the forces are in fact the centrifugal forces, they are depen- 
dent on the rate of rotation and an important dimensionless parameter in the 
problem is the ratio A, where 

Circumferential velocity SlR 

Urn ' 
-~ A =  - 

Axial velocity of free stream 

In the calculation of the boundary layer for this case, it cannot be assumed 
with any certainty that the usual properties of a turbulent boundary layer hold 
good. For example, it  is easy to see that centrifugal instability may cause a higher 
magnitude of velocity fluctuations in the boundary layer and consequently a 
greater turbulence intensity. As the rate at  which irrotational fluid is incorpor- 
ated into the boundary layer depends, at  least in part, on this intensity, it is 
expected that there should be a higher rate of entrainment. The non-dimensional 
entrainment has therefore been left as a 'free ' parameter in the following calcula- 
tions although results are also presented based on the unmodified flat-plate 
entrainment. 

In  fact, the modification to the entrainment was the only concession made to 
rotational effects, and the turbulent boundary-layer development was calculated 
by the straightforward application of the two-dimensional momentum-integral 
and entrainment equations, using the skin-friction relation and profile family 
due to Thompson (1965). The results have been compared with the measurements 
of Parr and, as will be seen later, show very satisfactory agreement. 
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2. Theory 
2.1. The quasi-collateral condition 

If, for the cylinder rotating in an axial stream, we take a co-ordinate system 
fixed in the surface of the cylinder, the streamline at the edge of the boundary 
layer becomes a helix of pitch angle cot-ll/h. I n  this co-ordinate system, the 
velocity of the fluid must decrease within the boundary layer and vanish at the 
surface of the cylinder. Referring to the direction of the streamline at  the edge of 
the boundary layer as the streamwise direction, there is no tendency for cross- 
flow to develop since the only pressure gradient that exists is normal to the 
surface and the Coriolis force acts towards the axis of the cylinder. (This involves 
the usual boundary-layer assumption that the mean flow normal to the surface is 
small.) 

It can therefore be concluded on physical grounds that cross-flow should be 
absent and that the boundary-layer streamlines should lie in the direction of the 
external helix. 

Cross-flow will, however, be introduced a t  the nose portion of the cylinder 
before the parallel section is reached, but this will be suppressed after a sufficient 
distance by the shear stresses in the boundary layer. This situation is well illu- 
strated by the experimental results of Furuya et al. (1966) where the deviation 
from the quasi-collateral condition is significantly greater in the laminar region 
than in the turbulent region further downstream. Not only has the cross-flow 
had less opportunity to decay in the laminar boundary layer which immediately 
follows the nose portion, but the shear forces producing the decay are very much 
smaller in laminar than in turbulent flow. 

2.2. Equations 

Consider a set of axes fixed on the surface of the cylinder. The directions of the 
axes are along the helix formed by the projection of the streamline at  the edge 
of the boundary layer on the cylinder surface, the perpendicular to this helix 
but still on the surface, and the radial extension normal to the surface. As the 
cylinder is a developable surface and the helix projections and their orthogonal 
family are straight lines on this developed surface, the acceleration terms are 
simply the corresponding terms in the Cartesian co-ordinahe system (see Howarth 
1951). 

Taking s as measured along the helix, n measured on the cylinder perpendicular 
to the helix, and z measured normal to the surface, and assuming the thickness 
of the boundary layer is small compared to the radius of the cylinder, it can be 
deduced that the following equations of mean motion hold for the turbulent 
boundarv laver : 

and (3) 
1-2 
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The equation of continuity is 
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au av aw 
- + - + - = 0. 
as an a~ (4) 

The Coriolis terms are neglected since they are very much smaller than the 
remaining terms. 

From equation (3)) it is seen that the pressure difference across the boundary 
layer is only of order S and can therefore reasonably be ignored. As there is no 
pressure gradient in the external flow, the terms aplas and appn  can be discarded, 
and if we now apply the considerations of the previous section to show that the 
cross flow is everywhere zero, then (1) and (2) become identical to the boundary- 
layer equations for flow over a flat plate in zero pressure gradient. Hence, in this 
co-ordinate system, the boundary-layer flow of the present case is effectively two- 
dimensional. Just as for the flat plate, (2) is actually redundant. Although it is not 
possible to prove the uniqueness of the solution for vanishing v everywhere, it is 
certainly a plausible solution, though the possibility of three-dimensional solu- 
tions, periodic in the cross-flow direction, cannot be dismissed on either physical 
or mathematical grounds. It may be noted a similar analysis applies to the lami- 
nar case, the effective two-dimensionality of which was pointed out by Sutton 
(Horlock et al. 1967). 

The momentum integral equation thus takes the simple form 

where B,, is the momentum thickness, rU, the wall shear stress in the streamwise 
direction and U the resultant velocity in the free stream (i.e. the vector sum of 
Urn and QR) . 

2.3. Auxiliary equation of entrainment 

Head (1958) has suggested that the rate of entrainment of free-stream fluid 
by the turbulent boundary layer should be simply a function of the velocity de- 
fect in the outer part of the layer, which may be measured by the magnitude of 
the free-stream velocity and some such form parameter as 

H ( = S*/B) or (= 6- s*/e), 

where S is the boundary-layer thickness, S* the displacement thickness and 8 
the momentum thickness. Thus, for the flat-plate case, it is assumed that the 
non-dimensional rate of entrainment CE is given by d(6- S*)/dx = CE(Hs-s.). 
Here we make the more general assumption that 

and curves of CE for different values of h have been chosen to give satisfactory 
agreement between calculated and measured boundary-layer developments. 
These are shown in figure 2. 
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FIGURE 2. Entrainment functions used in present calculations. 

3. Method of calculation 
To enable solutions to be obtained for (5 )  and (6) the following assumptions 

are made: (i) that the mean velocity profiles are essentially similar to those of a 
normal two-dimensional turbulent boundary layer, i.e. that the profiles can be 
specified by H and Re (where Re is the Reynolds number based on momentum 
thickness) by the use of Thompson’s (1965) two-parameter family of velocity 
profiles. This implies that the centrifugal and Coriolis forces have no direct effect 
on the mean velocity profiles; (ii) that the skin-friction coefficient is specified 
by H and R, as in the normal two-dimensional boundary layer; i.e. that it  is 
given by Thompson’s (1965) skin-friction relationship; (iii) that, although the 
dependence of on R, is implied by the assumption of a velocity profile 
family based on H and Re, it is sufficiently accurate, for the calculation of H 
development, to take H8-8. as a unique function of H as proposed by Head 
(1 958). This considerably reduces the computational complexity. 

The method of solution is one of step-by-step forward calculation from 
given initial conditions which are obtained from Parr’s experiment. 

Calculations were carried out for h = 2 , 3  and 4, the initial point for each 
calculation being taken within the region where the boundary layer was fully 
turbulent. 

4. Experimental arrangement (Parr 1962) 
The results of the calculations were compared with measurements made by 

Parr and it is therefore appropriate to give a brief description of his experimental 
arrangement. The rotating body consisted of a rounded nose followed by a 
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cylindrical section with a constant diameter of 0.456 m, as shown in figure 3. It 
wasrota,ted in a tunnel of circular section, 0.702m in diameter, in an axialstream 
provided by a fan downstream. As it was reported that the measured pressure 
distribution did not depend upon the rotation parameter, it may be assumed the 
boundary layers did not have any appreciable blockage effect on the main stream 
although the clearance between the rotating cylinder and the tunnel wall is not 
particularly large. 

u,,, ~l~ = 3 x 105 

Position Position 
3 7 

I l l  I 

b 
0.456 m 

Axial d i a m e t e r  - = - :-- - _  
stream 
___L 

Axial 0.702 m 

Stream diameter ___L 

I 

3 7 

0.456 m 

+ - urn 

!2 R/ U,,, = A ( A  takes values of 2, 3 ,  4) 

FIGURE 3. Experimental arrangement used by Parr (1962). 

Velocity profiles were measured by a 3-hole Pitot tube, and positions of tran- 
sition from laminar to turbulent flow were determined by means of a hot-wire 
anemometer. For the sets of experiments used in the present comparisons, the 
stream velocity in the test section was 20 m s-l, which corresponds to a Reynolds 
number U,,Rlv of 3 x lo5. Although the range of the experiments covered values 
of the rotation parameter h from 1 to 4, the set for h = 1 has been omitted be- 
cause of the very small extent of turbulent boundary layer on the body. 

An interesting feature of the experiment was that, at a value of h between 3 
to 4, the mean fluctuation velocities were found to be as high as 20 yo of the free- 
stream velocity. This was of course aresult of the destabilizing effect of the centri- 
fugal forces mentioned earlier. 

5. Comparison between theory and experiment 
As the calculations were restricted to the special case of the turbulent boundary 

layer on a cylinder of constant radius in zero pressure gradient, measurements at  
stations 0 to 2 were excluded, as they did not lie within the constant pressure 
region. However, from the experimental pressure distributions given by Parr, it  
appeared that, from station 3, the pressure remained substantially constant for 
all A. 

Figure 4 shows, for different values of A, the calculated curves for the momen- 
tum thickness Reynolds number in the streamwise direction, UOl1/v, together 
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with the experimental values. The initial values for the calculations have been 
taken from the experiments. It is seen that the agreement between the calcula- 
tions and the experiments is satisfactory even without any change in the entrain- 
ment relation given by Head. However, as will be seen from figure 5, where calcu- 
lated and experimental values of the form parameter of the streamwise velocity 
profiles are compa,red, the agreement is greatly improved when the entrainment 
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FIGURE 4. Developments of momentum thickness Reynolds number. - , present 

calculation; - -, from Head’s (1958) entrainment; 0, A ,  X , experiment. 
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FIGURE 5. Developments of the boundary-layer form parameter. - , present 
calculation; - -, from Head’s (1958) entrainment ; 0, A ,  x , experiment. 

rate is appropriately increased. This is because the form-parameter development 
is more sensitive to changes in entrainment than is the momentum-thickness 
development. 

The velocity profiles, as given by Thompson’s two-parameter family for calcu- 
lated H ,  R, values, agree closely with those measured by P a r ,  as shown in figure 
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6 for position 5 and different values of A. Thisindicates, that, although the bound- 
ary layer may have an appreciably higher turbulence level, the mean velocity 
profile is still quite similar to that of a normal two-dimensional turbulent bound- 
ary layer having the same values of H and Re. 

The torque coefficient CM is given by 

where M is the total resisting moment from the stagnation point to the 
point under consideration. 

UI u 
F I G U R E  6. Velocity profiles for position 5 (x/h' = 2.4) at different rates of rotation. 
0, experiment; __- , theory. 

a 6 C 

H 1.40 1.36 1.30 
2075 5900 10250 

h 2 3 4 
Rell 

This quantity was deduced by Pam from the measurements of mean velocity 
profiles by equating the rotational momentum loss to the applied moment. 
As shown in figure 7, the agreement between the present calculations and the 
experimental deductions is satisfactory, indicating that the c,(H, R,) relation 
given by Thompson is adequate for application to this rotating flow. The high 
boundary-layer turbulence and the curved surface do not appear to have any 
noticeable effect on the wall friction value. 

The overall agreement shows that all the assumptions made are justifiable, 
and that such an integral method of solution should be sufficiently accurate for 
engineering purposes. 
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6. Analysis of the instability in the boundary layer 
6.1. Introduct ion 

There is considerable current interest in the effects of surface curvature on 
boundary-layer development. As the detailed experimental data for the rotating 
cylinder is available, along with a satisfactory analytical description of the flow, 
it should be possible to obtain information regarding the effects of destabilizing 
centrifugal forces on the turbulent boundary layer. 

I i L o  

0.15 

0.10 

0.05 

I I I I 
2.0 2.5 3 .O 

XlR 
FIGURE 7. Torque coefficients of the rotating cylinder. 

C M  = M/+pQaR5. ~ , theory ; 0, A, experiment. 

Bradshaw (1969) showed that, physically, an appropriate Richardson number 
can be considered as the ratio of the square of the Brunt-Viiisala frequency to 
the square of the turbulence frequency. To derive the Brunt-Viiisiila frequency, 
the flow is considered relative to a set of axes fixed in space. Referring t o  figure 8, 
it is easily seen that the stability of the axial component should not be sub- 
stantially affected by the rotation, as it is qualitatively not much different from 
the flow over a flat plate. On the other hand, the circumferential component is 
subjected to centrifugal forces and is delicately balanced by normal pressure 
gradient. This highly unstable situation gives rise to large fluctuations. 

I f  the turbulence frequency is to be represented by some eddy-frequency scale, 
the appropriate scale in this particular case is obviously the gradient of the re- 
sultant velocity with respect to an axis rotating with the cylinder. 

The analogous Richardson number is therefore 
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Bradshaw (private communication) gave an equivalent expression of the 
Richardson number for this particular flow: 
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6.2. Estimation of changes in the apparent mixing length 

In  the Earth’s boundary layer, the change in the apparent mixing length has been 
expressed by the Monin-Oboukhov formula 

1 
- = l-PRi,  
10 

where /3 is a constant, roughly equal to 7 in stable conditions and 4.5 in unstable 
conditions. 
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However, there is no a priori evidence that the same constant p should apply, 
or that j3 should not vary across the boundary layer. For this reason it is of inter- 
est to determine values of /3 by evaluating the other terms in the above formula. 

The Richardson number can readily be obtained from expression (7) if the 
velocity profile is known. Evaluation of the ratio of mixing lengths, on the other 
hand, needs special consideration, since it requires a knowledge of the shear stress 
distribution in the boundary layer both for the case with instability and for the 
case without. Moreover, similar local conditions are required in the two cases 
(i.e. similar values of H and Re), so that the change in mixing length is entirely 
due to instability. 
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FIGURE 10. Development of the turbulent boundary layer on a flat plate and on a rotating 
cylinder ( A  = 4). 0, experiment; - , present calculation. 
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FIQURE 11. Calculated shear-stress profiles for the turbulent boundary layer on 

a flat plate and on a rotating cylinder (h = 4). H = 1.34, R, = 8500. 

Referring to figure 10, the plot of H against R, shows that there is an identical 
point for comparison in the developments of the turbulent boundary layers for 
the rotating cylinder (A = 4) and the flat plate. This corresponds to an H of 1.34 
and Re of 8500. 
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As the boundary-layer developments are given, the shear stress profiles can be 
evaluated assuming the velocity proflles to be represented by Thompson's 
family. The shear stress distributions determined in this way are shown in 
figure 11. 

As mixing-length theory gives 

r = p~ (auiaq2,  

it is easily deduced that for similar velocity profiles and boundary-layer thick- 

where the suffix 0 refers to the flat plate conditions. The constant, B is therefore 
evaluated from 

Profiles of 1/1, and t? are given in figure 12. It is seen that /3 varies from about 
0.25 near the wall to approximately 60 near the outer edge. It may be noted that 
the calculation becomes more unreliable as the edge of the boundary layer is 

I0 I I I I I I I I I I 

4 8  

FIGURE 12. Calculated Z/Z, and p profiles in the turbulent layer. 

approached, due to the difficulty of evaluating the shear stress with the necessary 
accuracy in this region. An important result is that the usual constant of /3 = 4.5 
for unstable conditions, as used in meteorology, seems to apply only at  the mid- 
region of the turbulent boundary layer. 

6.3. Correlation between instability in the turbulent boundary layer 
and increase in entrainment 

It may reasonably be assumed that the rate of entrainment depends upon the 
velocity defect of the outer part of the boundary layer and the turbulence level 
within the boundary layer. As the velocity defect can be represented by aular, 



Turbulent boundary layer 13 

and the turbulence level by the mixing length 1, the rate of entrainment might be 
expected, by dimensional arguments, to be proportional to Z(au/ax) (cf. Sawyer 
1963). 

Since the entrainment occurs in the intermittent region, it is logical to deter- 
mine effects on the rate of entrainment by referring to conditions at  the centre of 
this region. (See Sawyer 1963.) From the measurements of intermittency by 
Fiedler & Head (1966)) it is seen that the centre of this region varies between 
y/6 = 0.8 and y/S = 0.9. The value of 0.8 seems to apply for most turbulent bound- 
ary layers but for one near separation or with an exceptionally high level of 
turbulence it is nearer to 0.9. 

0.020 

0.015 

C E  

0.010 

0.005 , 6 7 8 9 10 11 12 

H8-8* 

FIGURE 13. Entrainments as a function of H8-8t. Curves: a, Head; b, curves used in 
calculations; C, C, = C,, (1 - 25Ri,,,,,,); d,  C E  = CEO (1 - 60 RiY,8=0.8). 

For the present, it  is assumed that the rate of entrainment is represented by 
the conditions at y/6 = 0.8, both for the unstable turbulent boundary layer and 
the neutrally stable flat-plate turbulent boundary layer. 

Based on this assumption, the ratio of the entrainments for the same H and R, 
is easily deduced to be 

CE/CE,  = (1 - p "Ri), 
where C, is the entrainment for the unstable case, 

CEO is the entrainment for the stable case, 

*Ri is the Richardson number at  y/6 = 0.8. 

B = 25 (see figure 12). and 
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Using the above formula, the ‘theoretical’ entrainment curves are plotted for 
h = 2 and 4 in figure 13. It is seen that the agreement between the above formula 
and the curves actually used is good for h = 2, but about 15 yo low for h = 4. A 
possible explanation is that, at  this higher rate of rotation, the centre of the en- 
training layer is nearer to ylS = 0.9 than 0-8. A formula based on this conjecture 
gives considerably improved agreement, as shown in figure 13. 

It is admitted that the method of correlation is highly empirical and there is 
need for more experiment. However, it does seem to give a fair estimate of the 
order of magnitude of the increase in entrainment. Until it  is superseded by 
more accurate analysis, (8) should be useful for application to other types of 
unstable boundary-layer flow, such as that over a concave surface. 

7. Conclusions 
It has been shown that, by the transformation to a set of axes rotating with 

the cylinder, the equations reduce to those for a two-dimensional boundary 
layer, provided the thickness of the layer is small compared to the radius of the 
cylinder. 

By merely increasing the rate of entrainment to take account of centrifugal 
instability, the normal two-dimensional turbulent boundary-layer calculation 
method proposed by Head can be used to obtain accurate predictions of the 
development of form parameter and momentum thickness. In  addition, Thomp- 
son’s two-dimensional velocity profile family gives a good description of the 
velocity profiles measured relative to a set of rotating axes. 

The instability in the turbulent boundary layer on a rotating cylinder can be 
expressed as a Richardson number in the same way as for thermal instability. 
Correlation between the ratio of mixing lengths and the Richardson number 
seems to indicate not a constant ,I3 of 4.5 in the Monin-Oboukhov formula, but 
a range of values from 0.25 to approximately 60 across the turbulent boundary 
layer. The increase in entrainment can be approximately described by the 
formula C, = CEO( 1 - P*Ri), where ,I3 has the value of about 25 corresponding to 
the Richardson number *Ri being evaluated at y/S = 0.8. 
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